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The new XDFCT algorithm is presented for the solution of hydrodynamic flow problems 
with steep gradients. This algorithm is an explicit finite-difference scheme based on the flux- 
corrected transport technique and it is a modification of existing ETBFCT algorithm. The use 
of different diffusive and antidiffusive fluxes enables us to use twice the time step with similar 
accuracy. This is shown by linear numerical analysis and verified by solution of three test 
problems. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

In many practical situations hydrodynamic flow occurs with steep gradients such 
as shock waves and contact discontinuities. High accuracy in the numerical solution 
of such problems is often of a primary interest. Among the most general and 
accurate methods of solution are explicit finite-difference schemes which use the 
flux-corrected transport technique [ 1,2]. These algorithms require no knowledge 
about the character of solution, are not restricted to a specific class of problems, 
and are independent of the use of various equations of state for different fluids. 

In this paper we attempt to optimize the well-known ETBFCT algorithm [3,4] 
which is considered to be one of the best of the above-mentioned algorithms. First, 
we present a linear numerical analysis of FCT algorithms and show the possibility 
of their optimization by modification of the diffusive and antidiffusive fluxes. This 
modification is named the XDFCT algorithm. Then we introduce three test 
problems to judge the influence of our modifications as well as for comparison with 
other algorithms. Solution of the given test problems verifies the possibility of using 
twice the time step with similar accuracy. 

2. NUMERICAL APPROXIMATION 

Partial differential equations describing hydrodynamic flow may be approxi- 
mated by a difference scheme on a discrete mesh. Values of variables are defined on 
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the mesh at the discrete time levels t” as averaged values within each mesh cell j 
with centers at the positions xj and interfaces at the positions xj+ ,,z. Basic 
properties of the difference scheme and errors in the resulting solution can be 
studied by means of linear numerical analysis (see the Appendix for more details). 
For simplicity, the continuity equation 

(1) 

where p is the density and u is the constant velocity, will be used in what follows. 

2.1. The FCT Difference Scheme 

The solution of Eq. (1) by the FCT technique may be symbolically written as 

f ?+ l/2 p;+Lp;- J dx -f:-li2+fp+1/2-fjD1/2 f;+1/2-fjA_l/2 

Ax - Ax ’ (2) 

where f T are the transport fluxes which reflect the real transport of mass, f D are 
the diffusive fluxes which introduce a numerical diffusion to the solution in order 
to ensure the stability and monotonicity, and f * are the antidiffusive fluxes which 
eliminate the excessive numerical diffusion where it is possible. The solution is, in 
fact, obtained by subsequent steps and the amount of antidiffusive fluxes is 
controlled by the limiter to avoid formation of new maxima or minima [4, 51. The 
usage of fluxes ensures the conservation property, because the same values are used 
as input for one cell and as output for an adjacent cell. 

The transport fluxes f T may be written as 

f’ J + 112 = $(p;+, + p;) v At, 

and after their application, the density values are 

(4) 

where E = v(Ar/Ax) is the Courant number. This difference scheme is known as the 
forward time centered space (FTCS) scheme and the resulting solution is named as 
the transported solution. However, it can be shown that this scheme is unstable. 

The numerical stability is obtained by the addition of a diffusion term to the 
transported solution. This may be done by introducing the diffusive fluxes 

f ,“+ l,2 = d ‘y+;; 6, 

where d > 0 is the artificial viscosity coefficient. The resulting solution is named the 
transported diffused solution and may be written as 

P~D=P,T+v(p;+1-2pin+pin-l), (6) 
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where v = d/(dx)* is the diffusion coefficient. It can be shown that the solution is 
stable for 

and 

IEI < 1 (7) 

V > fE*. (8) 

The use of small values of the diffusion coefficient gives a nonmonotonic solution 
(i.e., it contains unphysical oscillations near steep gradients). It was shown [l] that 
monotonicity is ensured if 

; IEl <V < 4. (9) 

For [cl < 1, the value of i 1~1 is always larger than the value of $E* as is shown 
in Fig. 1. Thus for ensuring monotonicity a higher numerical diffusion has to be 
used than it is suffkient for ensuring stability. However, whether the monotonicity 

FIG. 1. Diffusion coeffkients Y of the ETBFCT and XDFCT algorithms, stability condition (8), and 
monotonicity condition (9) as functions of the Courant number ~=u(dz/dx). While the ETBFCT is 
limited by IsI < 4 to obtain monotonic solution the XDFCT is limited by 1~1 < 1 and thus it can use twice 
the time step. 



74 DUSAN ODSTRCIL 

will be really violated depends on the specific situation for each cell of the mesh. 
Therefore a more accurate solution can be obtained by elimination or reduction of 
this excessive diffusion if it occurs. This is principle of the FCT technique and this 
task is performed by the antidiffusive fluxes controlled by the limiter [4, 51. 

2.2. The Original FCT Algorithms 

The first FCT algorithms has been the SHASTA [S] and it uses the antidiffusive 
fluxes, 

where a > 0, and the antidiffusion coefficient is defined as p = a/(dx)2. However, 
when the velocity is zero, it is not possible to eliminate diffusion (known as the 
residual diffusion). 

Therefore this algorithm has been subsequently modified using the antidiffusive 
fluxes, 

(11) 

Such an algorithm has been named as the low phase error (LPE) phoenical 
FCT algorithm [ 1, 81 and its generalization to various coordinate systems and 
non-Eulerian meshes has been named as the ETBFCT algorithm [3,4]. Linear 
numerical analysis of the difference scheme gives the amplification function, 

g=1-2(v-~)(l-cosjI)-is[(1+2~)sin/?-~sin2~], 

the relative amplitude error, 

(12) 

A= [2(v-p)-~‘3 p’+ -(~-p)~-~++*-2p~* 1 p4+ . . . . (13) 

and the relative phase error, 

R = (v - 4 - 4~‘) /I’ + O(B4) + . . . . (14) 

From (12) it can be seen that for E = 0 the amplification functions equals one (i.e., 
there is no residual diffusion) if v = p. In addition, choosing 

v=;+fE* (15) 
p=L-E* (16) 

enables fulfillment of the condition for zero residual diffusion and simultaneously 
reduces both amplitude and phase errors to the fourth order. Though the difference 
scheme is stable for (~1 d 1, using the above diffusion and antidiffusion coefficients 
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restricts its application for 1~1 6 f. This is caused by violation of the monotonicity 
condition (9) for $< 1~1 < 1 (see Fig. 1). 

2.3. The XDFCT Algorithm 

The occurrence of the residual diffusion in the SHASTA algorithm when the 
velocity is zero is understandable. Its antidiffusive fluxes use the pTD values which 
are always different from the original values p” used for the diffusive fluxes. Thus 
the antidiffusion is not able to fully remove the introduced diffusion. On the other 
hand, there is no transport when the velocity is zero (pT - p”) and the ETBFCT 
algorithm uses the same values for the diffusive and antidiffusive fluxes. Thus it is 
possible to fully eliminate the residual diffusion. 

We note that the values of pT are not the only ones which remain unchanged by 
the difference scheme when the velocity is zero. The phoenical antidiffusive fluxes 
can also be obtained using the values of p” or p”+ ‘I*. 

Using p” gives no advantage, because then the diffusive and antidiffusive fluxes 
are the same except for the different coefficients used. Thus these coefficients are not 
independent and one value is actually used in the amplification function. Therefore 
it is not possible to minimize both the amplitude and phase errors. 

However, using p” + ‘/* is more promising. As with the ETBFCT, the diffusive and 
antidiffusive fluxes use the same density gradients when the velocity is zero and they 
are independent in a general case. The values of p”+ ‘I2 are calculated at the 
auxiliary “half’ time step. This step is redundant for the other FCT algorithms 
when the passive convection with a constant velocity is calculated. In general, 
however, they also use the half step because the transport fluxes have to be time 
centered. While the other FCT algorithms can use the same difference scheme for 
both steps, using the atidiffusive fluxes with p”+ “* prevents this. The ETBFCT 
difference scheme is used to gain p” + “* during the half time step, 

P;+~‘*=Pf-~(P~+I-P~-l)+v(P~+I-2P~+P~~,)-p(p:,, -2p;+ P,‘_,), (17) 

where 

(18) 

and v and ~1 are the diffusion and antidiffusion coefficients used at the half step. 
Then p” + ’ can be calculated by a second difference scheme during the full time 
step, 

- M( p;y - 2p; + l’* + p;:;“), (19) 

where N and M are the diffusion and antidiffusion coefficients used at the full step. 
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The above given two step difference scheme has been named the XDFCT. Its 
numerical analysis is given in the Appendix in more detail. The XDFCT difference 
scheme has the amplification function, 

g = 1 - 2(N- M)( 1 - cos p) - 2M(v - /L)(cos 2p - 4 cos p + 3) 

- it3 
[C 

l+M+gMp 
)(z) I1 sinp- M+2M~ sin2fl+Fsin3fl 

the relative amplitude error, 

A= [2(N-M)-&2] p2 

1 jl”+ . ..) 

and the relative phase error, 

R= N-$-;-;E2 fi’+o(p4)+ . . . . 

(20) 

(21) 

(22) 

From (20) it can be seen that for E = 0 the amplification function equals one (i.e., 
there is no residual diffusion) if v = p and N = M. Further, choosing the following 
diffusion and antidiffusion coefficients, 

N= ;+ kc2 (23) 
M=4-$2, (24) 

enables us to fulfill the condition of zero residual diffusion and to reduce 
simultaneously both amplitude and phase errors to the fourth order. Thus XDFCT 
has error properties similar to those of ETBFCT. However, the larger diffusion 
coefficients ensure the monotonicity for IsI < 1 (Fig. 1). This enables us to use twice 
the time step in calculations. 

3. TEST PROBLEMS 

We have chosen three test problems for a thorough comparison of our modilica- 
tions of the ETBFCT algorithm. These tests have been already published together 
with the exact solutions. This enables a more objective comparison to be made, as 
well as comparison with other numerical algorithms. 

The first two problems are convection problems of a square wave [5] and a 
semicircle [6]. They can serve for the first comparisons of various numerical 
algorithms. Those giving unsatisfactory results should be abandoned. The third test 
problem is the two interacting blast waves problem [7]. It can serve for the 
comparison of numerical solutions of the complete hydrodynamic equations. Good 
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performance on such a difficult test problem should assure quality results under 
more ordinary circumstances. 

3.1. Convection of a Square Wave and a Semicircle 

The square wave convection test problem was introduced by Boris [5] for a 
basic comparison of various numerical algorithms. It involves the square wave 
travelling with a constant velocity. Though this test problem is very simple it can 
cause numerical difficulties to some algorithms due to the presence of steep 
gradients. These difficulties can show themselves as excessive numerical diffusion or 
as unphysical oscillations in the solution. The semicircle convection test problem 
was suggested by MacDonald [6] for further basic comparison of numerical 
algorithms, It involves the semicircle (half dome) travelling with a constant velocity. 
This test problem enables us to show the phase distortion effect for less diffusive 
algorithms and thus it represents an additional and liner convection test problem. 

The convection problems require solution of the one-dimensional continuity 
equation (1). The initial conditions for both test problems are defined on a uniform 
grid of 100 points with periodic boundary conditions. Distance between grid points 
dx is 1.0 m. The velocity v = 1.0 is constant within the whole system. Calculations 
are performed with three different time steps At = 0.2, 0.4, and 0.8 s, i.e., with the 
Courant numbers E = v At/Ax = 0.2, 0.4, and 0.8, respectively. 

The square wave is 20 grid points wide with constant density 2.0 from the 2nd 
to the 21st point. The density is 0.5 throughout the rest of the grid. The calculations 
are performed up to 160s; i.e., they require 800, 400, and 200 loops for respective 
time steps. 

The semicircle is a total of 30 grid points wide with the density determined by 

p; = 1 + 2( 1 - (j- 20)2/152)“2 (25) 

from the 5th to the 35th point with a maximum of 3.0 at the 20th point. The density 
is 1.0 throughout the rest of the grid. The calculations are performed up to 60s; i.e., 
they require 300, 150, and 75 loops for the respective time steps. 

The exact solution of the convection test problems is a shifted and unchanged 
initial density distribution. For more objective comparison of results, the average 
absolute error 

A.E. = & ‘& 1 pi - pieXaCt 1 
J 

(26) 

will be used as a measure of inaccuracy of the solution gained numerically from the 
known exact solution. 

3.2. Two Interacting Blast Waves 

This test problem was introduced by Woodward [7] to illustrate the strong 
relationship between the accuracy of the overall flow solution and the thinness of 
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discontinuities on the grid. It involves multiple interactions of strong shocks, 
rarefactions, and contact discontinuities with each other and with boundaries. 
Because much of the important interactions take place in a small volume, this 
problem is very difficult to compute on a uniform Eulerian grid. 

The test problem requires solution of the system of one-dimensional hydro- 
dynamic equations, 

-$+-$Ec)= -$pu), (29) 

where p is the density, u is the velocity, p is the pressure, and E is the total energy 
density. This system of equations is closed by the expression for the total energy 
density 

(30) 

which serves for the determination of pressure. The initial condition consists of 
three constant states of an ideal gas with y = 1.4, which is at the rest between reflect- 
ing walls separated by a distance of 1 m. The density is 1.0 everywhere, while in the 
the leftmost tenth of the volume the pressure is 1000, in the rightmost tenth is 100, 
and in between it is 0.01. The resulting hydrodynamic flow evolution is relatively 
complex and details are given by Woodward and Colella [2]. 

Calculations are performed on two different grids of 200 and 800 points, i.e., with 
Ax = 0.005 and 0.00125 m, respectively. The time step is variable and controlled 
such that the maximum Courant-Friedrichs-Lewy stability number 

E*=(Iu( +c)$ 

where c = (yp/~)‘/~ is the sound velocity, has approximately the same value during 
the whole calculation. The prescribed values used for .szax are 0.4 and 0.8. 
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4. RESULTS AND DISCUWON 

Here we present and discuss results of the given test problems. For more 
convenient comparison of the influence of our modifications, we present, at first, the 
results obtained using the original ETBFCT algorithm. Then we describe individual 
modifications and present the results obtained. All calculations were performed on 
the IBM 370/148 or the similar EC 1045 computer with the use of a single precision 
(32 bits in a word). 

4.1. Convection of a Square Wave 

Because the square wave moves on a periodic mesh, correct solution of this test 
problem by FCT algorithms requires not only periodic boundary conditions for 
densities but also some modifications within these algorithms. These modifications 
ensure correct periodic values also for transported and transported-diffused 
densities which are used as auxiliary quantities as well as ensuring correct action 
of the limiter at the boundaries, Figure 2 shows the solution of a square wave 
convection by the ETBFCT algorithm. The average absolute error (A.E.) is 0.0388 
for E = 0.2 which corresponds to the value of 0.038 given by Boris [3]. The possible 
small difference is caused by the different precision used for computation and by 
rounding errors. We have also used the ETBFCT algorithm with only “external” 
periodic boundary conditions (i.e., in its original form) when values of auxiliary 
quantities are obtained by extrapolation using the same gradients at boundaries as 
periodic densities have and when the limiter acts only partially. The solution 
obtained is only slightly more diffused with the average absolute error 0.0397. For 
comparison, the average absolute error is 0.260 for the Lax (or one-sided) 
algorithm, 0.119 for the double-step Lax-Wendroff algorithm with the added small 
diffusion, 0.057 for the first FCT algorithm SHASTA, and 0.042 (?) for the 
phoenical explicit LPE algorithm [S, 83. Better results have been published [8] 
only for the phoenical implicit FCT, the reversible FCT, and the implicit optimal 
Fourier algorithms, with errors of 0.034, 0.033, and 0.022, respectively. However, 
these algorithms are not suitable for practical computations of shock waves [8]. 
Thus the ETBFCT gives the best published result gained by a general purpose 
algorithm. Accuracy of the solution increases for larger values of E up to 0.5. Then 
the condition of monotonicity (9) is violated, because the diffusion introduced is 
not sufhcient (Fig. 1). Though the solution is stable (7) it contains large overshoots 
and undershoots. 

As has been mentioned in the previous section, linear numerical analysis shows 
that it is possible to realize the FCT algorithm which has ensured monotonicity for 
1~1~ 1.0 and thus it can use twice the time step rather than the ETBFCT algorithm. 
This algorithm has been named the XDFCT and it has formally the same order of 
amplitude and phase accuracy as the ETBFCT. The results of the square wave 
convection obtained by the XDFCT are shown in Fig. 3. It can be seen that the 
solution for E = 0.8 is monotonic and has no overshoots or undershoots. For E < 0.5, 
the average absolute errors are comparable with those of the ETBFCT. However, 

581/91/l-6 
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FIG. 2. Solution of the square wave convecfkm probkm by the ETBFCT at 160 s. Violation of the 
monotonicity can be- seen for ~=0.8. This can cause diffkulties for the solution of hydrodynamic flow 
with steep gradients. 
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the XDFCT gives errors near the top edge at the beginning and behind the bottom 
edge at the end of the wave. These errors are caused by larger diffusion used at the 
main step which gives more “eroded” transported-diffused solution at steep 
gradients. This solution is used by the limiter for ensuring monotonicity during 
removal of excessive diffusion. Thus the applied antidiffusive fluxes are not allowed 
to fully remove the introduced excessive diffusion. Only the fact that the XDFCT 
gives more steep sides of the wave enables us to obtain comparable accuracy of the 
solution. This solution could be improved possibly by using a limiter which enables 
larger antidiffusive fluxes. 

4.2. Convection of a Semicircle 

Figure 4 shows the solution of a semicircle convection using the ETBFCT 
algorithm. Distortion of curved profiles can be seen. The semicircle profile has 
variable slopes between its values on the grid which can be considered as parts of 
waves with different wave lengths. Due to phase errors, these waves propagate, on 
a discrete grid, with different velocities and tend to steepen the profiles. This effect 
can be suppressed by larger diffusion which causes smoothing. However, the limiter 
does not detect this situation because no new extrema are formed or attenuated and 
thus it allows the removal of as much diffusion as possible. This results in distortion 
for less diffusive algorithms where phase errors are not overlayed or suppressed by 
amplitude ones. For E = 0.8, the monotonicity condition (9) is violated; however, 
due to small gradients there are also small overshoots and undershoots. The phase 
distortion is smaller due to larger diffusion coefficients. 

Finally, Fig. 5 shows the solution obtained using the XDFCT algorithm. Again 
the solution is monotonic for E = 0.8. Errors caused by large diffusion used by the 
limiter (see the preceding subsection) are now small due to small gradients. All 
solutions are slightly more accurate than those obtained using the ETBFCT. This 
is caused by larger diffusion used by the limiter which is now welcome. 

4.3. Interaction of Two Blast Waves 

Figure 6 shows distribution of the density at times 0.026 and 0.038 s for the 
solution of the two interacting blast waves problem on 200 and 800 point grids with 
E&,, = 0.4. Positions of the shocks and contact discontinuities are calculated very 
accurately. Further, the shock waves are sharply resolved with a width of only one 
cell. However, the contact discontinuities are slightly smeared. Especially, it is 
difficult to accurately resolve the contact discontinuity which originally formed at 
x = 0.1 m at times when it is overtaken by a reflected rarefaction wave with a steep 
density slope. Its position is approximately at 0.5 and 0.6 m in Figs. 6a and 6b, 
respectively. The hardest to represent is the compressed density slab between the 
contact discontinuity, which formed when the two shocks collided, and the contact 
discontinuity, which originally formed at x = 0.9 m. Its position is approximately 
between 0.65 and 0.8 m in Fig. 6b. 

Figure 7 shows the solution obtained using the XDFCT algorithm on 200 and 
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FIG. 4. Solution of the semicircle convection problem by the ETBFCT at 60s. The reason for the 
distortion is discussed in the text. Small gradients cause only small violations of the monotonicity for 
E = 0.8. 
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FIG. 5. Solution of the semicircle convection problem by the XDFCT at 60s. The larger diffusion 
oeffkients used enable us to obtain a slightly more accurate solution than with the ETBFCT. 
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Solution of the two interacting blast waves problem by the ETBFCT with E& = 0.4 on Solution of the two interacting blast waves problem by the ETBFCT with E& = 0.4 on 200 200 
(circles) and 800 point grid (solid line) at 0.026 and 0.038 s. Calculation failed for F&, = (circles) and 800 point grid (solid line) at 0.026 and 0.038 s. Calculation failed for F&, = 0.8. 0.8. 
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800 point grids with E:,, = 0.8. We note that the use of such large time steps caused 
the failure of calculation for the ETBFCT algorithm. The XDFCT solution is 
successful and comparable with that obtained using the ETBFCT with F;,, = 0.4. 
The XDFCT gives slightly lower density peaks on a 200 point grid, but slightly 
steeper contact discontinuities. Errors at steep gradients occur only for passively 
convected contact discontinuities and not for shock waves, and they are relatively 
very small for this extreme test. The solution on the 800 point grid is better for the 
ETBFCT between 0.55 and 0.6 m at 0.026 s and better for the XDFCT near 0.7 m 
at 0.038 s. 

XDFCT TIME=0.026 

D , 

1 
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I I I I I I 1 I , I 
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FIG. 7. Solution of the two interacting blast waves problem by the XDFCT with E:,, = 0.8 on 200 
point grid (circles) and 800 point grid (solid line) at 0.026 and 0.038 s. Errors are relatively small for 
this extreme test. 
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XOFCT TIME=0.038 
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FIG. l-Continued 

5. CONCLUSIONS 

We have introduced the XDFCT algorithm for solution of hydrodynamic flow 
with steep gradients. This algorithm is a modification of the existing ETBFCT 
algorithm and uses different antidiffusive fluxes. Optimal form of the corresponding 
diffusion and antidiffusion coefficients was found by linear numerical analysis. 
Amplitude and phase errors are reduced to the fourth order as in the ETBFCT; 
however, twice the time step can be used without violation of the monotonicity. 

Three test problems were used to verify properties of the new algorithm. Solution 
of a square wave convection shows small errors near steep gradients. They are 
caused by larger diffusion coeffkients which give the more diffused solution used 
by the limiter. This effect can be seen also in the hydrodynamic test problem for 
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contact discontinuities while shock waves are untouched except for slightly lower 
peaks. However, errors are relatively small in this extreme test. The solution at 
steep gradients could be improved by the limiter which allows larger antidiffusive 
fluxes. On the other hand, sides of a square wave and contact discontinuities are 
slightly steeper. Further, distortion of a semicircle convection is slightly smaller due 
to suppression of phase errors by higher diffusion coefficients. Use of twice the time 
step was successfully verified for all tests. The XDFCT makes it possible to reduce 
computer time for a given mesh or to gain higher resolution using a finer mesh for 
a given amount of computer time. 

APPENDIX 

Here we give details about the numerical analysis of the XDFCT algorithm. After 
each time step the numerical solution can be decomposed into a finite Fourier 
series. The behaviour of any given harmonic can be studied by substitution of 

into the difference scheme, where p” is the amplitude of the given harmonic and /? 
is the phase angle (B = k Ax = 2x Ax/l., where k is the wave number and 1 is the 
wave length). The amplification function is defined as 

g = 8” + l/p. (A-2) 

The relative amplitude error is defined as the amplitude of damping of the given 
harmonic 

A = 1- 1812, (A.31 

where 1g12, for complex function, is gg* and g* is the complex conjugate function 
of g. The relative phase error is defined as the difference of the distance propagated 
by the wave in the analytic solution and the distance propagated by the given 
harmonic in the numerical solution 

x-vAt kx 
R=-c---l. 

vAt .$ 

The value of x can be computed from 

(A.41 

Imk) tan(kx) = - - 
Mg)’ 

(A-5) 
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The amplitude and phase errors depend on E, v, p, and p and for small /I (i.e., large 
wave lengths), Taylor expansion can be used to find the optimal form of the 
diffusion and antidiffusion coefficients for minimizing these errors. 

A. 1. Auxiliary Expressions 

Euler relations : 

eip = cos jl + i sin b, 

e -iP=cos~-isinfi. 

Taylor expansions : 

sinfi=/j-E?+BS- _.. , 
6 120 

(A-8) 

cosp=Jc+c . ..) 
2 24 (A.91 

z3 zs 
arctanz=z--5+ 5 -- ..*> I.4 < 1, 

&l+z+z’+ . ..) 12) < 1. 

A.2. The Amplification Factor 

The XDFCT uses the difference scheme 

where 

(A.61 

(A.7) 

(A.lO) 

(A.11) 

(A.12) 

pi” + 1’2 = 
(A.13) 

and 

p:=p;-$(p;+,-&). 

Introducing (A.13) into the difference scheme gives 

(A.14) 
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P:+‘=P;‘-~(P;+I-P;-I)+N(p;,,-2p;+p;-,) 

-~(p;+~-P;)+v(P;,,-2p;‘+,+P;) 

which is 

p;+’ =P;-$y+1 -Pj”-,)+(N-M)(P;+,-2Pi”+P,“-,) 

+F (Pjn+2 -2P~+,+2p;-,-P;~,) 

- WP:, 2 -4~7,~ +6pj”-4&, +p;-,) 

+m(P,T,*- 4p;+ 1 + 6pi’ - 4pi’_ 1 + pi’_ J. 

Further, introducing (A.14) gives 

p;“=p;-;(p;+l -Pr-1)+(N-M)(p17+,--2pin+pr-1) 

+$%;+2 -2p;+, +2p;p,-p;-,) 

- MePi”+ 2 -4pi”+,+6pj”-4pi”~,+p,“_,) 

(A.15) 

(A.16) 

(A.17) 
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which is 

-pj”-,)+(N-M)(p,“+,-2pj”+p,“_,) 

+$%$+2 -2Py+,+2pj”-,-p;-,) 

- WV - PL)bjn+ 2 -4Pi”+,+6Pi”-4pj”~,+p;-,) 

-m+;+, - 4P7+2 + 5P7+ 1 -5p~-,+4p7-2-pjn-3). (A.18) 

Now, substitution of (A.l) into this difference scheme enables us to gain the 
amplification function 

g=l-~(e’P-,-i~)+(N-M)(f’P+,~‘8-2) 

+~(e’“-e-‘2”-2e”+2e-i~) 

-~(~-~)(~‘28+~-‘2B-4~lB-4~-‘B+6) 

-~p~(eiW-e-i38- 4e’V + 4e - i2B + 5efP _ 5e - iB). (A.19) 

Introducing trigonometric functions (A.8 )-(A.9) gives 

g=l-.sisin/I+2(N-M)(cosP-1) 

i sin 28 - 2i sin /I) - 2M(v - fi)(cos 2p - 4 cos fl+ 3) 

- Alp i (i sin 38 - 4i sin 2/I + 5i sin /-I), 

which is finally 

(A.20) 

- i.s l+M+zMp ) ( 2 ) sinp- M+2Mp sin2jI+Fsin3/? 1. (A.211 

A.3. The relative Amplitude Error 

The modulus of the amplification function (A.21) is 

~g~2=[1-2(N-M)(1-cos~)-2M(v-~)(cos2j?-4cos~+3)]2 

+E2 i+M+iMp ) ( 2 ) sinp- M+2Mp sin2j?+Fsin3/? 1’. 64.22) 
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Expanding trigonometric functions (A.8)-(A.9) gives 

-2M(v-p) l-$+24- 
( 

16fi4 42!!?+4p4+3 2 
2 24 )I 

(A.23) 

which is 

(A.24) 

The relative amplitude error (A.3) is then 

A= [2(N-M)-&2] p’ 

N-M 
~+2M(v-B)++2-ME2 1 p”+ ... . (A.25) 

A.4 The Relative Phase Error 

The phase properties are derived from 

tan(kx) = sC(l + M+ 5WP) sin B - (M/2 + IMP) sin 28 + GW2) sin 381. (A 26) 
1-2(N-M)(1-cosj?)-2M(v-~)(cos2~-4cos~+3) * 

Expanding trigonometric functions (A.8)-(A.9) gives 

.s[(l + M+ SMp/2)(/3- 8’/6) - (M/2 + 2Mp)(2/?- 8/13/6) 

tan(k) = + (M~/2)(38 - 2783/6)1 > 
l-2(N-M)(l-l+p*/2) 

> 

, (A.27) 

-2M(v-p)(l-4B2/2-4+4/?*/2+3) 

which is 

tan(kxQN-l +(-d+M/W*l 
l-(N-M)P* ’ 

(A.28) 
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Use of the inverse function and its expansion (A.lO) gives 

kx=EB~1+(-~++/w21 -E3/33/3[1+(-~+M/2)/9233 

l-(N-M)p* [l-(N-M)pJ3 . 

The relative phase error (A.4) is then 

-[1-(N-M)/?*]3+[1+(-~+M/2)~2][1-(N-M)~2-J2 

R= 
-&*/3*/3[1+(-;+M/2)/.?*]3 

[1-(N-M)fiq3 

Considering terms only up to the order of /I” gives 

R= -1+3(N-M)j?*+l+(-~+M/2)f12-2(N-M)/12-(s2/3)~* 
1 - 3(N- M) p’ 7 

which is 

( M 1 &* 

) 

1 
R= N-~-~-~ fi',-3(N-~)~** 
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(A.29) 

(A.30) 

(A.31) 

(A.32) 

Expanding fraction (A.1 1) and again considering terms only up to the order of fl’ 
finally gives 

R=(N44/2-~-~~*)~*+0(~~)+ . . . . (A.33) 
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